Study and Characterization of Hydrochar from Duku (Lansium domesticum) Peel
DOI:
https://doi.org/10.26554/ijmr.2023127Keywords:
Lansium domesticum, Carbonization, HydrocharAbstract
Peel of duku fruit (Lansium domesticum) was prepared into hydrochar by using hydrothermal carbonation method at heating time variation of 8, 10, 12, 24 hours and temperature variation of 200 and 250°C. X-Ray Diffraction (XRD), Fourier Transform Infra Red (FT-IR), Brunauer Emmet Teller (BET) and Scanning Electron Microscope (SEM) analyses were conducted to determine at what time and temperature variations the adsorbent had the best adsorption quality. Based on the characteristics of the adsorbent, it can be seen that the best hydrochar is at 12 hours and at a temperature of 200°C. X-Ray Diffraction (XRD) analysis showed the presence of diffraction peaks at angles of 15.7° and 22.79° Fourier Transform Infra Red (FT-IR) analysis obtained explained that there were peaks of vibration peaks namely -OH, -CH, =CH, C=O, C=C aromatic and aliphatic. Brunauer Emmet Teller (BET) analysis can be seen that the increase in surface area on duku fruit peel (Lansium domesticum) and hydrochar at 200°C from 12.343 m2 /g to 22.635 m2 /g. Scanning Electron Microscope (SEM) analysis shows that the surface peel of duku fruit (Lansium domesticum) material has a clumped surface morphology in the same phase or also called aggregation, while the hydrochar tends to have an irregular shape or can be called heterogeneous morphology.
References
Congsomjit, D. and C. Areeprasert (2021). Hydrochar-derived Activated Carbon from Sugar Cane Bagasse Employing Hydrothermal Carbonization and Steam Activation for Syrup Decolorization. Biomass Conversion and Biorefinery, 11; 2569–2584
Hasanah, M., A. Wijaya, F. S. Arsyad, R. Mohadi, and A. Lesbani (2023). Preparation of C-based Magnetic Materials from Fruit Peel and Hydrochar using Snake Fruit (Salacca zalacca) Peel as Adsorbents for the Removal of Malachite Green Dye. Environment and Natural Resources Journal, 21(1); 67–77
Huseini, M. R., E. I. Marjuki, D. Iryawan, and T. Y. Hendrawati (2018). Pengaruh Variasi Temperatur Pengolahan Hidrothermal Ampas Kopi terhadap Yield Energi untuk Bahan Baku Pembuatan Biobriket. Prosiding Semnastek; 1846–2047 (in Indonesia)
Hussin, F., N. N. Hazani, M. Khalil, and M. K. Aroua (2023). Environmental Life Cycle Assessment of Biomass Conversion Using Hydrothermal Technology: A Review. Fuel Processing Technology, 246; 107747
Islam, M. A., M. Ahmed, W. Khanday, M. Asif, and B. Hameed (2017). Mesoporous Activated Coconut Shell-Derived Hydrochar Prepared via Hydrothermal Carbonization-Naoh Activation for Methylene Blue Adsorption. Journal of Environmental Management, 203; 237–244
Juleanti, N., N. Normah, P. M. S. B. N. Siregar, A. Wijaya, N. R. Palapa, T. Taher, N. Hidayati, R. Mohadi, and A. Lesbani (2022). Comparison of the Adsorption Ability of MgAl-HC, CaAl-HC, and ZaAl-HC Composite Materials Based on Duku Peel Hydrochar in Adsorption of Direct Green Anionic Dyes. Indonesian Journal of Chemistry, 22(1); 192–204
Kantakanit, P., N. Tippayawong, S. Koonaphapdeelert, and A. Pattiya (2018). Hydrochar Generation from Hydrothermal Carbonization of Organic Wastes. IOP Conference Series: Earth and Environmental Science, 159(1); 012001
Khoshbouy, R., F. Takahashi, and K. Yoshikawa (2019). Preparation of High Surface Area Sludge-Based Activated Hydrochar via Hydrothermal Carbonization and Application in the Removal of Basic Dye. Environmental Research, 175; 457–467
Lam, Y. F., L. Y. Lee, S. J. Chua, S. S. Lim, and S. Gan (2016). Insights into the Equilibrium, Kinetic and Thermodynamics of Nickel Removal by Environmental Friendly Lansium domesticum Peel Biosorbent. Ecotoxicology and Environmental Safety, 127; 61–70
Mlonka-Mędrala, A., M. Sieradzka, and A. Magdziarz (2022). Thermal Upgrading of Hydrochar from Anaerobic Digestion of Municipal Solid Waste Organic Fraction. Fuel, 324; 124435
Mohadi, R., E. S. Fitri, N. R. Palapa, et al. (2022a). Unique Adsorption Properties Of Cationic Dyes Malachite Green And Rhodamine-B On Longan (Dimocarpus Longan) Peel. Science and Technology Indonesia, 7(1); 115–125
Mohadi, R., N. Normah, N. R. Palapa, and A. Lesbani (2022b). M2+ (Ni, Cu, Zn)/Al-LDH Composites with Hydrochar from Rambutan Peel and Study the Adsorption Efficiency for Organic Dyes. Environment and Natural Resources Journal, 20(2); 221–233
Palapa, N. R., N. Ahmad, H. P. Utami, Z. A. Zahara, R. Mohadi, and A. Lesbani (2023a). Adsorption of Phenol Using Hydrochar Modified Layered Double Hydroxide–Kinetic, Isotherm, and Regeneration Studies. Ecological Engineering & Environmental Technology, 24(5); 275–281
Palapa, N. R., A. Wijaya, P. M. S. B. N. Siregar, A. Amri, N. Ahmad, T. Taher, and A. Lesbani (2023b). Adsorption of Fe (II) by Layered Double Hydroxide Composite with Carbon-Based Material (Biochar and Graphite): Reusability and Thermodynamic Properties. Indonesian Journal of Chemistry, 23(1); 101–112
Pauline, A. L. and K. Joseph (2020). Hydrothermal Carbonizationcof Organic Wastes to Carbonaceous Solid Fuel–A Review of Mechanisms and Process Parameters. Fuel, 279; 118472
Salim, M., N. Sulistyaningrum, A. Isnawati, H. Sitorus, Y. Yahya, and T. Ni’mah (2016). Karakterisasi Simplisia dan Ekstrak Kulit Buah Duku (Lansium domesticum Corr) dari Provinsi Sumatera Selatan dan Jambi. Jurnal Kefarmasian Indonesia, 6(2); 117–128 (in Indonesia)
Sartika, N. D., E. G. Sa’id, T. C. S. Machfud, and G. P. TIP (2014). Kajian Pembuatan Arang Aktif Berbahan Baku Bagas Tebu Melalui Kombinasi Proses Karbonisasi Hidrotermal Dan Aktivasi Kimia. Jurnal Teknologi Industri Pertanian, 24(2); 157–165 (in Indonesia)
Sennou, A. S., S. Xiu, and A. Shahbazi (2020). Comparative Evaluation of Hydrochars and Pyrochars for Phosphate Adsorption from Wastewater. Applications of Biochar for Environmental Safety; 71
Siregar, P. M. S. B. N., A. Wijaya, J. P. Nduru, N. Hidayati, A. Lesbani, and R. Mohadi (2022). Layered Double Hydroxide/C (C= Humic acid; Hydrochar) as Adsorbents of Cr (VI). Science and Technology Indonesia, 7(1); 41–48
Tondl, G., C. Hammerl, C. Pfeifer, and D. Pum (2020). Reaction and Diffusion Kinetics During Hydrothermal Carbonization by Means Of SEM–EDX Analysis. Industrial & Engineering Chemistry Research, 59(5); 1829–1835
Triyono, B., M. Gusman, D. Hutapea, P. Prawisudha, and A. Pasek (2016). State of the Art Teknologi Hidrotermal untuk Pengolahan Sampah Kota Menjadi Bahan Bakar Padat. Proceeding Seminar Nasional Tahunan Teknik Mesin XV (SNTTM XV), 6(4); 5–6 (in Indonesia)
Ulfa, M. (2016). Korelasi hasil Karakterisasi XRD, N2 Adsorpsi-desorpsi dan TEM pada Karbon Mesopori dari Gelatin Tulang Sapi. Jurnal Kimia Riset, 1(2); 101
Wijaya, A., P. M. S. B. N. Siregar, A. Priambodo, N. R. Palapa, T. Taher, and A. Lesbani (2021). Innovative Modified of CuAl/C (C= Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution. Science and Technology Indonesia, 6(4); 228–234
Wijaya, A., N. Yuliasari, et al. (2023). Biochar Derived from Rice Husk as Effective Adsorbent for the Removal Congo Red and Procion Red MX-5B Dyes. Indonesian Journal of Material Research, 1(1); 1–7
Yu, S., X. Dong, P. Zhao, Z. Luo, Z. Sun, X. Yang, Q. Li, L. Wang, Y. Zhang, and H. Zhou (2022). Decoupled Temperature and Pressure Hydrothermal Synthesis of Carbon Sub-Micron Spheres from Cellulose. Nature Communications, 13(1); 3616
Zbair, M., M. Bottlinger, K. Ainassaari, S. Ojala, O. Stein, R. L. Keiski, M. Bensitel, and R. Brahmi (2020). Hydrothermal Carbonization of Argan Nut Shell: Functional Mesoporous Carbon with Excellent Performance in the Adsorption of Bisphenol A and Diuron. Waste and Biomass Valorization, 11; 1565–1584
Zhang, B., Z. Dong, D. Sun, T. Wu, and Y. Li (2017). Enhanced Adsorption Capacity of Dyes by Surfactant-Modified Layered Double Hydroxides from Aqueous Solution. Journal of Industrial and Engineering Chemistry, 49; 208–218