A Review: Carbon Nanotubes (Preparation, Properties, and Biomedical Applications)

Authors

  • Rusul K. Ismail College of Dentistry, University of Diyala, Ba’aqubah, Diyala, 32001, Iraq
  • Shahlaa M. Abd Al Hussan Ministry of Education, Diyala Education Directorate, Diyala, 32001, Iraq

DOI:

https://doi.org/10.26554/ijmr.20253361

Keywords:

Carbon Nanotubes, Biological Degradation, Single and Multiple-Walled Nanotubes, Nanomaterials

Abstract

One of the most significant areas of nanotechnology is carbon nanotubes. Because of their special properties and cylindrical structure, carbon nanotubes are employed in nanotechnology applications. Their many qualities, such as stiffness, strength, and surface area, have generated interest in the pharmaceutical industry. Single-walled nanotubes and multiple-walled nanotubes are the two types of CNTs. There are several techniques for creating CNTs, including chemical deposition, laser ablation, and arc discharge. These nanotubes are employed in drug delivery and diagnostic systems. Because of its many applications in medicine delivery, it is critical to understand the toxicities of carbon nanotubes and how to handle any problems that may arise. Many research have lately focused on the mechanism of carbon nanotube biodegradation. Single and double walled carbon nanotubes must be a safer and more effective way to distribute medications.

References

Aizawa, M. and M. S. Shaffer (2003). Silylation of Multi-Walled Carbon Nanotubes. Chemical Physics Letters, 368(1-2); 121–124.

Anajwala, C. C., G. K. Jani, and S. V. Swamy (2010). Current Trends of Nanotechnology for Cancer Therapy. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3); 1043–1056.

Bhushan, B. (2004). Micro/Nanotribology and Materials Characterization Studies Using Scanning Probe Microscopy. In Springer Handbook of Nanotechnology. Springer, Berlin, Heidelberg, pages 497–541.

Boehm, H. P. (1997). The First Observation of Carbon Nanotubes. Carbon (New York, NY), 35(4); 581–584.

Brenner, D. W. (1990). Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films. Physical Review B, 42(15); 9458.

Calvert, P. (1992). Strength in Disunity. Nature, 357(6377).

Cao, A., C. Xu, J. Liang, D. Wu, and B. Wei (2001). X-Ray Diffraction Characterization on the Alignment Degree of Carbon Nanotubes. Chemical Physics Letters, 344(1-2); 13–17.

Charlier, A., E. McRae, R. Heyd, M. F. Charlier, and D. Moretti (1999). Classification for Double-Walled Carbon Nanotubes. Carbon, 37(11); 1779–1783.

Cheng, C., K. H. Müller, K. K. Koziol, J. N. Skepper, P. A. Midgley, M. E. Welland, and A. E. Porter (2009). Toxicity and Imaging of Multi-Walled Carbon Nanotubes in Human Macrophage Cells. Biomaterials, 30(25); 4152–4160.

Dasari, B. S., W. R. Taube, P. B. Agarwal, M. Rajput, A. Kumar, and J. Akhtar (2015). Room Temperature Single Walled Carbon Nanotubes (SWCNT) Chemiresistive Ammonia Gas Sensor. Sensors & Transducers, 190(7); 24.

De Volder, M. F., S. H. Tawfick, R. H. Baughman, and A. J. Hart (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119); 535–539.

Dey, P. and N. Das (2013). Carbon Nanotubes: It’s Role in Modern Health Care. International Journal of Pharmacy and Pharmaceutical Sciences, 5(4); 9–13.

Donaldson, K., V. Stone, C. L. Tran, W. Kreyling, and P. J. A. Borm (2004). Occupational and Environmental Medicine. Nanotoxicology, 61; 727–728.

Ebbesen, T. W. and P. M. Ajayan (1992). Large-Scale Synthesis of Carbon Nanotubes. Nature, 358(6383); 220–222.

Eklund, P. C., J. M. Holden, and R. A. Jishi (1995). Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory. Carbon, 33(7); 959–972.

Gommes, C., S. Blacher, K. Masenelli-Varlot, C. Bossuot, E. McRae, A. Fonseca, and J. P. Pirard (2003). Image Analysis Characterization of Multi-Walled Carbon Nanotubes. Carbon, 41(13); 2561–2572.

Govindaraj, A. and C. N. R. Rao (2006). Synthesis, Growth Mechanism and Processing of Carbon Nanotubes. In Carbon Nanotechnology. Elsevier, pages 15–51.

Hao, Y., X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, and Y. Rui (2017). Potential Applications and Antifungal Activities of Engineered Nanomaterials Against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Frontiers in Plant Science, 8; 1332.

He, B., W. Sun, M. Wang, S. Liu, and Z. Shen (2004). Preparation and Characterization of a Series of Novel Complexes by Single Walled Carbon Nanotubes (SWNTs) Connected Poly (Amic Acid) Containing Bithiazole Ring. Materials Chemistry and Physics, 84(1); 140–145.

Hu, H., P. Bhowmik, B. Zhao, M. A. Hamon, M. E. Itkis, and R. C. Haddon (2001). Determination of the Acidic Sites of Purified Single-Walled Carbon Nanotubes by Acid–Base Titration. Chemical Physics Letters, 345(1-2); 25–28.

Iijima, S., P. M. Ajayan, and T. Ichihashi (1992). Growth Model for Carbon Nanotubes. Physical Review Letters, 69(21); 3100.

Iijima, S. and T. Ichihashi (1993). Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363; 603–605.

Isaacs, J. A., A. Tanwani, M. L. Healy, and L. J. Dahlben (2010). Economic Assessment of Single-Walled Carbon Nanotube Processes. Journal of Nanoparticle Research, 12; 551–562.

Itkis, M. E., D. E. Perea, R. Jung, S. Niyogi, and R. C. Haddon (2005). Comparison of Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 127(10); 3439–3448.

José-Yacamán, M., M. Miki-Yoshida, L. Rendón, and J. G. Santiesteban (1993). Catalytic Growth of Carbon Microtubules with Fullerene Structure. Applied Physics Letters, 62(6); 657–659.

Journet, C., W. K. Maser, P. Bernier, A. Loiseau, M. L. de La Chapelle, D. S. Lefrant, and J. E. Fischer (1997). Large Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique. Nature, 388(6644); 756–758.

Jung, D. H., Y. K. Ko, and H. T. Jung (2004). Aggregation Behavior of Chemically Attached Poly (Ethylene Glycol) to Single Walled Carbon Nanotubes (SWNTs) Ropes. Materials Science and Engineering: C, 24(1-2); 117–121.

Kagan, V., A. Potapovich, A. Osipov, D. Schwegler-Berry, E. Kisin, R. Mercer, and A. Shvedova (2004). Iron-Rich Single Walled Carbon Nanotubes Are Effective Catalysts of Oxidative Stress in RAW264.7 Macrophage Cell Culture Model: Interactions with Inflammatory Response and In Vivo Implications. Free Radical Biology and Medicine, 37; S51–S52.

Kastner, J., T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, and H. Zandbergen (1994). Resonance Raman and Infrared Spectroscopy of Carbon Nanotubes. Chemical Physics Letters, 221(1-2); 53–58.

Kato, T., G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya (2003). Single-Walled Carbon Nanotubes Produced by Plasma-Enhanced Chemical Vapor Deposition. Chemical Physics Letters, 381(3-4); 422–426.

Kiang, C. H., M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus (1998). Size Effects in Carbon Nanotubes. Physical Review Letters, 81(9); 1869.

Kingston, C. (2007). Challenges in the Characterization of Carbon Nanotubes: The Need for Standards. In Molecular and Nanomaterial Architectures Group Tri-National Workshop on Standards for Nanotechnology.

Kingston, C. T., Z. J. Jakubek, S. Dénommée, and B. Simard (2004). Efficient Laser Synthesis of Single-Walled Carbon Nanotubes Through Laser Heating of the Condensing Vaporization Plume. Carbon, 42(8-9); 1657–1664.

Klinke, C., R. Kurt, J. M. Bonard, and K. Kern (2002). Raman Spectroscopy and Field Emission Measurements on Catalytically Grown Carbon Nanotubes. The Journal of Physical Chemistry B, 106(43); 11191–11195.

Komarov, F. F. and A. M. Mironov (2004). Carbon Nanotubes: Present and Future. Physics and Chemistry of Solid State, 5(3); 411–429.

Kong, J., M. G. Chapline, and H. Dai (2001). Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Advanced Materials, 13(18); 1384–1386.

Krätschmer, W., L. D. Lamb, K. H. D. R. Fostiropoulos, and D. R. Huffman (1990). Solid C60: A New Form of Carbon. Nature, 347(6291); 354–358.

Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). C60: Buckminsterfullerene. Nature, 318(6042); 162–163.

Kuhlmann, U., H. Jantoljak, N. Pfänder, P. Bernier, C. Journet, and C. Thomsen (1998). Infrared Active Phonons in Single Walled Carbon Nanotubes. Chemical Physics Letters, 294(1-3); 237–240.

Kumar, A., S. Parveen, S. Husain, J. Ali, H. Harsh, and M. Husain (2013). Field Emission Behaviour of the Single Wall Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapour Deposition (PECVD) System. Journal of Nano-and Electronic Physics, 5(2); 02012–1.

Kumar, A., S. Parveen, S. Husain, J. Ali, M. Zulfequar, and M. Husain (2014). A Comparative Study of Nitrogen Plasma Effect on Field Emission Characteristics of Single Wall Carbon Nanotubes Synthesized by Plasma Enhanced Chemical Vapor Deposition. Applied Surface Science, 322; 236–241.

Kuzmany, H., B. Burger, A. Thess, and R. E. Smalley (1998). Vibrational Spectra of Single Wall Carbon Nanotubes. Carbon, 36(5-6); 709–712.

Kuzmany, H., W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, and Y. Achiba (2001). Determination of SWCNT Diameters from the Raman Response of the Radial Breathing Mode. The European Physical Journal B–Condensed Matter and Complex Systems, 22; 307–320.

Liu, L., Y. Qin, Z. X. Guo, and D. Zhu (2003). Reduction of Solubilized Multi-Walled Carbon Nanotubes. Carbon, 41(2); 331–335.

Liu, Z., S. M. Tabakman, Z. Chen, and H. Dai (2009). Preparation of Carbon Nanotube Bioconjugates for Biomedical Applications. Nature Protocols, 4(9); 1372–1381.

Lone, M. Y., A. Kumar, S. Husain, R. C. Singh, M. Zulfequar, and M. Husain (2019). Fabrication of Sensitive SWCNT Sensor for Trace Level Detection of Reducing and Oxidizing Gases (NH3 and NO2) at Room Temperature. Physica E: Low-Dimensional Systems and Nanostructures, 108; 206–214.

Lone, M. Y., A. Kumar, S. Husain, M. Zulfequar, and M. Husain (2017). Growth of Carbon Nanotubes by PECVD and Its Applications: A Review. Current Nanoscience, 13(5); 536–546.

Magrez, A., S. Kasas, V. Salicio, N. Pasquier, J. W. Seo, M. Celio, and L. Forró (2006). Cellular Toxicity of Carbon-Based Nanomaterials. Nano Letters, 6(6); 1121–1125.

Majzlíková, P., J. Sedláček, J. Prášek, J. Pekárek, V. Svatoš, A. G. Bannov, and J. Hubálek (2015). Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption. Sensors, 15(2); 2644–2661.

Manohara, H. M., M. J. Bronikowski, M. Hoenk, B. D. Hunt, and P. H. Siegel (2005). High-Current-Density Field Emitters Based on Arrays of Carbon Nanotube Bundles. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 23(1); 157–161.

Mawhinney, D. B., V. Naumenko, A. Kuznetsova, J. T. J. Yates, J. Liu, and R. E. Smalley (2000). Surface Defect Site Density on Single Walled Carbon Nanotubes by Titration. Chemical Physics Letters, 324(1-3); 213–216.

Meng, J., J. Meng, J. Duan, H. Kong, L. Li, C. Wang, and X. D. Yang (2008). Carbon Nanotubes Conjugated to Tumor Lysate Protein Enhance the Efficacy of an Antitumor Immunotherapy. Small, 4(9); 1364–1370.

Morsi, M., M. Helal, M. El-Okr, and M. Ibrahim (2015). Preparation and Characterization of Multiwall Carbon Nanotubes Decorated with Zinc Oxide. Der Pharma Chemica, 7(10); 139–144.

Pai, P., K. Nair, S. Jamade, R. Shah, V. Ekshinge, and N. Jadhav (2006). Pharmaceutical Applications of Carbon Tubes and Nanohorns. Current Pharma Research Journal, 1; 11–15.

Paliwal, S., K. Pandey, S. Pawar, H. Joshi, and N. Bisht (2020). A Review on Carbon Nanotubes: As a Nano Carrier Drug Delivery System. Indian Journal of Pharmaceutical Sciences, 82(5).

Paradise, M. and T. Goswami (2007). Carbon Nanotubes–Production and Industrial Applications. Materials & Design, 28(5); 1477–1489.

Peng, H., L. B. Alemany, J. L. Margrave, and V. N. Khabashesku (2003). Sidewall Carboxylic Acid Functionalization of Single Walled Carbon Nanotubes. Journal of the American Chemical Society, 125(49); 15174–15182.

Pereira, M. F. R., J. L. Figueiredo, J. J. Órfão, P. Serp, P. Kalck, and Y. Kihn (2004). Catalytic Activity of Carbon Nanotubes in the Oxidative Dehydrogenation of Ethylbenzene. Carbon, 42(14); 2807–2813.

Pop, E., D. Mann, Q. Wang, K. Goodson, and H. Dai (2006). Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature. Nano Letters, 6(1); 96–100.

Rahamathulla, M., R. R. Bhosale, R. A. Osmani, K. C. Mahima, A. P. Johnson, U. Hani, and H. V. Gangadharappa (2021). Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. Materials, 14(21); 6707.

Raj, A. A. A. S., J. Ragavi, S. Rubila, D. Tirouthchelvamae, and T. V. Ranganathan (2013). Recent Trends in Nanotechnology Applications in Foods. International Journal of Engineering Research and Technology (IJERT), 2(10); 956–961.

Rokade, P., A. Patil, R. Harshad, and S. Payghan (2021). Carbon Nanotubes: A Review. International Journal of Creative Research Thoughts (IJCRT), 9(8); 622–628.

Rols, S., R. Almairac, L. Henrard, E. Anglaret, and J. L. Sauvajol (1999). Diffraction by Finite-Size Crystalline Bundles of Single Wall Nanotubes. The European Physical Journal B–Condensed Matter and Complex Systems, 10; 263–270.

Saito, T., K. Matsushige, and K. Tanaka (2002). Chemical Treatment and Modification of Multi-Walled Carbon Nanotubes. Physica B: Condensed Matter, 323(1–4); 280–283.

Sattler, K. D. (2010). Handbook of Nanophysics: Principles and Methods. CRC Press.

Sayes, C. M., F. Liang, J. L. Hudson, J. Mendez, W. Guo, J. M. Beach, and V. L. Colvin (2006). Functionalization Density Dependence of Single-Walled Carbon Nanotubes Cytotoxicity In Vitro. Toxicology Letters, 161(2); 135–142.

Seidel, R., G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, and F. Kreupl (2004). Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 °C and a Simple Growth Model. The Journal of Physical Chemistry B, 108(6); 1888–1893.

Sharma, S., S. Hussain, S. Singh, and S. S. Islam (2014). MWCNT Conducting Polymer Composite Based Ammonia Gas Sensors: A New Approach for Complete Recovery Process. Sensors and Actuators B: Chemical, 194; 213–219.

Sinnott, S. B. and R. Andrews (2001). Carbon Nanotubes: Synthesis, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences, 26(3); 145–249.

Sloan, J. and M. L. H. Green (2000). Encapsulation and Crystallization Behavior of Materials Inside Carbon Nanotubes. In Handbook of Nanostructured Materials and Nanotechnology. Academic Press, pages 407–432.

Smart, S. K., A. I. Cassady, G. Q. Lu, and D. J. Martin (2006). The Biocompatibility of Carbon Nanotubes. Carbon, 44(6); 1034–1047.

Song, M. and D. Cai (2012). Graphene Functionalization: A Review. Polymer-Graphene Nanocomposites, 26(26); 1–51.

Taghdisi, S. M., P. Lavaee, M. Ramezani, and K. Abnous (2011). Reversible Targeting and Controlled Release Delivery of Daunorubicin to Cancer Cells by Aptamer-Wrapped Carbon Nanotubes. European Journal of Pharmaceutics and Biopharmaceutics, 77(2); 200–206.

Thurnherr, T., C. Brandenberger, K. Fischer, L. Diener, P. Manser, X. Maeder-Althaus, and P. Wick (2011). A Comparison of Acute and Long-Term Effects of Industrial Multiwalled Carbon Nanotubes on Human Lung and Immune Cells In Vitro. Toxicology Letters, 200(3); 176–186.

Varshney, K. (2014). Carbon Nanotubes: A Review on Synthesis, Properties and Applications. International Journal of Engineering Research and General Science, 2(4); 660–677.

Walker, P. L. J., J. F. Rakszawski, and G. R. Imperial (1959). Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts. I. Properties of Carbon Formed. The Journal of Physical Chemistry, 63(2); 133–140.

Wang, S. J., W. X. Zhu, D. W. Liao, C. F. Ng, and C. T. Au (2004). In Situ FTIR Studies of NO Reduction over Carbon Nanotubes (CNTs) and 1 wt.% Pd/CNTs. Catalysis Today, 93; 711–714.

Wang, X., Z. Zhou, and F. Chen (2017). Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen. Materials, 10(12); 1375.

Wieckowski, S., G. Pastorin, M. Benincasa, C. Klumpp, J. P. Briand, R. Gennaro, and A. Bianco (2005). Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angewandte Chemie International Edition, 44; 6358–6362.

Xu, M., Q. Huang, Q. Chen, P. Guo, and Z. Sun (2003). Synthesis and Characterization of Octadecylamine Grafted Multi-Walled Carbon Nanotubes. Chemical Physics Letters, 375(5-6); 598–604.

Yang, Z. L., H. Z. Chen, L. Cao, H. Y. Li, and M. Wang (2004). Synthesis and Photoconductivity Study of Carbon Nanotube Bonded by Tetrasubstituted Amino Manganese Phthalocyanine. Materials Science and Engineering: B, 106(1); 73–78.

Ye, X. R., Y. Lin, C. Wang, M. H. Engelhard, Y. Wang, and C. M. Wai (2004). Supercritical Fluid Synthesis and Characterization of Catalytic Metal Nanoparticles on Carbon Nanotubes. Journal of Materials Chemistry, 14(5); 908–913.

Zare-Zardini, H., A. Amiri, M. Shanbedi, M. Memarpoor-Yazdi, and A. Asoodeh (2013). Studying of Antifungal Activity of Functionalized Multiwalled Carbon Nanotubes by Microwave-Assisted Technique. Surface and Interface Analysis, 45(3); 751–755.

Zeng, Q., Z. Li, and Y. Zhou (2009). Study on Catalytic Conversion of Methane to Acetylene in a Rotating Arc Reactor. Journal of Natural Gas Chemistry, 16; 235–246.

Zhou, M., Z. Wang, and X. Wang (2017). Carbon Nanotubes for Sensing Applications. In Industrial Applications of Carbon Nanotubes. Elsevier, pages 129–150.

Zhu, W. Z., D. E. Miser, W. G. Chan, and M. R. Hajaligol (2003). Characterization of Multiwalled Carbon Nanotubes Prepared by Carbon Arc Cathode Deposit. Materials Chemistry and Physics, 82(3); 638–647.

Downloads

Published

2025-07-29

Issue

Section

Review