Selectivity Adsorption of Anionic Dyes by Macroalgae E. cottonii
DOI:
https://doi.org/10.26554/ijmr.20242123Keywords:
E. cottonii , Macroalgae , Selectivity , Anionic DyesAbstract
The selectivity analysis of anionic dye adsorption by E. cottonii macroalgae has been successfully conducted in this study. Selectivity analysis encompassed congo red, direct yellow, methyl orange, and direct green dyes with measurements taken at 0, 2, 4, 6, 8, and 10-minute intervals. The dye concentration was standardized at 50 g/mL, and 20 mL of each dye solution was utilized. Variations in absorbance were assessed using a UV-Vis Spectrophotometer, revealing that E. cottonii exhibited the highest selectivity for methyl orange. Characterization through FT-IR indicated the presence of O-H, C-H aliphatic, C=N, C=C, C-O, and N-H bonds in the dried E. cottonii macroalgae material. These results affirm the superior selectivity of E. cottonii in adsorbing methyl orange, as demonstrated by the selectivity test.
References
Ahmad, N., N. R. Palapa, and T. Taher (2023). Rice Husks as Green Adsorbents for Removal of Anionic Dyes: Kinetic, Isotherm and Thermodynamic Adsorption Studies. Indonesian Journal of Material Research, 1(1); 23–28
Chan, S. W., H. Mirhosseini, F. S. Taip, T. C. Ling, and C. P. Tan (2013). Comparative Study on the Physicochemical Properties of κ-Carrageenan Extracted from Kappaphycus alvarezii (Doty) Doty ex Silva in Tawau, Sabah, Malaysia and Commercial κ-Carrageenans. Food Hydrocolloids, 30(2); 581–588
Charoensiddhi, S., R. E. Abraham, P. Su, and W. Zhang (2020). Seaweed and Seaweed-Derived Metabolites as Prebiotics. In Advances in Food and Nutrition Research, volume 91. Elsevier Inc., 1st edition
Farobie, O., N. Syaftika, I. Masfuri, T. P. Rini, D. P. A. Lanank Es, A. Bayu, A. Amrullah, E. Hartulistiyoso, N. R. Moheimani, S. Karnjanakom, and Y. Matsumura (2022). Green Algae to Green Fuels: Syngas and Hydrochar Production from Ulva lactuca via Sub-critical Water Gasification. Algal Research, 67(1); 102834
Hamad, H. N. and S. Idrus (2022). Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers, 14(4)
Jalilian, M., R. Bissessur, M. Ahmed, A. Hsiao, Q. S. He, and Y. Hu (2024). A Review: Hydrochar as Potential Adsorbents for Wastewater Treatment and CO2 Adsorption. Science of the Total Environment, 914(January); 169823
Jumaidin, R., S. M. Sapuan, M. Jawaid, M. R. Ishak, and J. Sahari (2017). Characteristics of Eucheuma cottonii Waste from East Malaysia: Physical, Thermal and Chemical Composition. European Journal of Phycology, 52(2); 200–207
Kammler, S., A. Malvis Romero, C. Burkhardt, L. Baruth, G. Antranikian, A. Liese, and M. Kaltschmitt (2024). Macroalgae Valorization for the Production of Polymers, Chemicals, and Energy. Biomass and Bioenergy, 183(November 2023); 107105
Lee, X. J., H. C. Ong, J. Ooi, K. L. Yu, T. C. Tham, W. H. Chen, and Y. S. Ok (2022). Engineered Macroalgal and Microalgal Adsorbents: Synthesis Routes and Adsorptive Performance on Hazardous Water Contaminants. Journal of Hazardous Materials, 423(PA); 126921
Lu, Y., D. He, H. Lei, J. Hu, H. Huang, and H. Ren (2018). Adsorption of Cu (II) and Ni (II) from Aqueous Solutions by Taro Stalks Chemically Modified with Diethylenetriamine. Environmental Science and Pollution Research, 25(18); 17425–17433
Mittal, R., R. Sharma, and K. S. M. S. Raghavarao (2022). Novel Adsorption Approach for the Enrichment of R-Phycoerythrin from Marine Macroalga Gelidium pusillum. Algal Research, 62(November 2021); 102605
Palapa, N. R., B. R. Rahayu, T. Taher, R. Mohadi, and A. Lesbani (2019a). Kinetic Adsorption of Direct Yellow onto Zn/Al and Zn/Fe Layered Double Hydroxides. Science and Technology Indonesia, 4(4); 101–104
Palapa, N. R., T. Taher, R. Mohadi, and A. Lesbani (2019b). Removal of Anionic Direct Dye Using Zn/Al, Zn/Fe and Zn/Cr Layered Double. Science and Technology Indonesia, 4(3); 70–76
Park, S. H., H. J. Cho, C. Ryu, and Y. K. Park (2016). Removal of Copper(II) in Aqueous Solution Using Pyrolytic Biochars Derived from Red Macroalga Porphyra tenera. Journal of Industrial and Engineering Chemistry, 36; 314–319
Prakoso, T., R. Nurastuti, R. Hendriansyah, J. Rizkiana, G. Suantika, and G. Guan (2018). Hydrothermal Carbonization of Seaweed for Advanced Biochar Production. MATEC Web of Conferences, 156; 1–5
Puspawati, S., Wagiman, M. Ainuri, D. A. Nugraha, and Haslianti (2015). The Production of Bioethanol Fermentation Substrate from Eucheuma cottonii Seaweed through Hydrolysis by Cellulose Enzyme. Agriculture and Agricultural Science Procedia, 3; 200–205
Raval, N. P., P. U. Shah, and N. K. Shah (2017). Malachite Green “A Cationic Dye” and Its Removal from Aqueous Solution by Adsorption. Applied Water Science, 7(7); 3407–3445
Santos, S. A. O., C. Vilela, C. S. R. Freire, M. H. Abreu, S. M. Rocha, and A. J. D. Silvestre (2015). Chlorophyta and Rhodophyta Macroalgae: A Source of Health Promoting Phytochemicals. Food Chemistry, 183; 122–128
Shobier, A. H., M. M. El-Sadaawy, and G. F. El-Said (2020). Removal of Hexavalent Chromium by Ecofriendly Raw Marine Green Alga Ulva fasciata: Kinetic, Thermodynamic and Isotherm Studies. Egyptian Journal of Aquatic Research, 46(4); 325–331
Soliman, N. K., H. S. Mohamed, S. A. Ahmed, F. H. Sayed, A. H. Elghandour, and S. A. Ahmed (2019). Cd2+ and Cu2+ Removal by the Waste of the Marine Brown Macroalga Hydroclathrus clathratus. Environmental Technology and Innovation, 15; 100365
Wibiyan, S., A. Wijaya, and P. M. S. B. N. Siregar (2023). Adsorption of Phenol Using Cellulose and Hydrochar: Kinetic, Isotherm, and Regeneration Studies. Indonesian Journal of Material Research, 1(2); 61–67
Wijaya, A. and N. Yuliasari (2023). Biochar Derived from Rice Husk as Effective Adsorbent for the Removal Congo Red and Procion Red MX-5B Dyes. Indonesian Journal of Material Research, 1(1); 1–7
Zheng, L. X., X. Q. Chen, and K. L. Cheong (2020). Current Trends in Marine Algae Polysaccharides: The Digestive Tract, Microbial Catabolism, and Prebiotic Potential. International Journal of Biological Macromolecules, 151; 344–354