The Effect of Titanium Nanostructure on Corrosion Resistance as Dental Implants: A Review

Authors

  • Fadhli Muhammad Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Shintia Novia Sari Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
  • Bonita Dilasari Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia

DOI:

https://doi.org/10.26554/ijmr.20242121

Keywords:

Dental Implant , Corrosion , Nanocrystalline , Titanium , TiO2 Nanotube

Abstract

Titanium is widely recognized as the most biocompatible metal due to the inert passive oxide layer that forms spontaneously on its surface. However, dental implants made of titanium and its alloys remain susceptible to corrosion when exposed to saliva for extended periods in the oral environment. Additionally, the presence of alloying elements in the alloy may raise concerns about potential toxicity concerns upon release into the human body. Consequently, there is an increasing need for research aimed at improving the mechanical properties and biocompatibility of dental implants made from both commercially pure titanium (CP Ti) and Ti alloys. This article provides a review of recent publications that investigate the impact of grain size reduction on ultrafine-grained and nanocrystalline CP Ti and Ti alloys. The article explores the modification of the oxide layer to nanotube TiO2 and its influence on corrosion resistance. The analysis of accumulated data provides a comprehensive understanding of the mechanisms underlying corrosion resistance improvement, offering valuable insights into the crucial directions for future research in this field.

References

Al-Saady, F. A., S. A. Rushdi, and A. H. Abbar (2020). Improvement the Corrosion Behavior of Titanium by Nanotubular Oxide in a Simulated Saliva Solution. In IOP Conference Series: Materials Science and Engineering, volume 870. IOP Publishing, page 012060

Alves, S. A., S. B. Patel, C. Sukotjo, M. T. Mathew, N. Paulo Filho, J. P. Celis, L. A. Rocha, and T. Shokuhfar (2017). Synthesis of Calcium-Phosphorous Doped TiO2 Nanotubes by Anodization and Reverse Polarization: A Promising Strategy for an Efficient Biofunctional Implant Surface. Applied Surface Science, 399; 682–701

Balasubramanian, R., R. Nagumothu, E. Parfenov, and R. Valiev (2021). Development of Nanostructured Titanium Implants for Biomedical Implants–A Short Review. Materials Today: Proceedings, 46; 1195–1200

Balyanov, A., J. Kutnyakova, N. Amirkhanova, V. Stolyarov, R. Valiev, X. Liao, Y. Zhao, Y. Jiang, H. Xu, and T. Lowe (2004). Corrosion Resistance of Ultra Fine-Grained Ti. Scripta Materialia, 51(3); 225-229

Barjaktarević, D., J. Bajat, I. Cvijović-Alagić, I. Dimić, A. Hohenwarter, V. Ðokić, and M. Rakin (2018). The Corrosion Resistance in Artificial Saliva of Titanium and Ti-13Nb-13Zr Alloy Processed by High Pressure Torsion. Procedia Structural Integrity, 13; 1834–1839

Barjaktarević, D., I. Dimić, I. Cvijović-Alagić, Ð. Veljović, and M. Rakin (2017). Corrosion Resistance of High Pressure Torsion Obtained Commercially Pure Titanium in Acidic Solution. Tehnicki Vjesnik-Technical Gazette, 24(6); 1689–1695

Barjaktarević, D. R., V. R. Djokić, J. B. Bajat, I. D. Dimić, I. L. Cvijović-Alagić, and M. P. Rakin (2019). The Influence of the Surface Nanostructured Modification on the Corrosion Resistance of the Ultrafine-Grained Ti–13Nb–13Zr Alloy in Artificial Saliva. Theoretical and Applied Fracture Mechanics, 103; 102307

Benea, L., E. Mardare-Danaila, M. Mardare, and J. P. Celis (2014). Preparation of Titanium Oxide and Hydroxyapatite on Ti–6Al–4V Alloy Surface and Electrochemical Behaviour in Bio-Simulated Fluid Solution. Corrosion Science, 80; 331–338

Brunette, D. M., P. Tengvall, M. Textor, P. Thomsen, and R. Schenk (2001). The Corrosion Properties of Titanium and Titanium Alloys. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications; 145–170

Chaturvedi, T. (2009). An Overview of the Corrosion Aspect of Dental Implants (Titanium and Its Alloys). Indian Journal of Dental Research, 20(1); 91–98

Corne, P., A. S. Vaillant, F. Cleymand, P. De March, and J. Geringer (2016). Fretting-Corrosion in Dental Implants. In Conference Paper

Demetrescu, I., C. Pirvu, and V. Mitran (2010). Effect of Nano-Topographical Features of Ti/TiO2 Electrode Surface on Cell Response and Electrochemical Stability in Artificial Saliva. Bioelectrochemistry, 79(1); 122–129

Dimić, I., I. Cvijović-Alagić, A. Hohenwarter, R. Pippan, V. Kojić, J. Bajat, and M. Rakin (2018). Electrochemical and Biocompatibility Examinations of High-Pressure Torsion Processed Titanium and Ti–13Nb–13Zr Alloy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(3); 1097–1107

Duraccio, D., F. Mussano, and M. G. Faga (2015). Biomaterials for Dental Implants: Current and Future Trends. Journal of Materials Science, 50; 4779–4812

Elias, C., J. Lima, R. Valiev, and M. Meyers (2008). Biomedical Applications of Titanium and Its Alloys. Biological Materials Science, 60; 46–49

Elias, C. N., M. A. Meyers, R. Z. Valiev, and S. N. Monteiro (2013). Ultrafine Grained Titanium for Biomedical Applications: An Overview of Performance. Journal of Materials Research and Technology, 2(4); 340–350

Garbacz, H., I. Semenova, S. Zherebtsov, and M. Motyka (2018). Nanocrystalline Titanium. Micro and Nano Technologies. Elsevier Science

Gittens, R., R. Olivares-Navarrete, R. Tannenbaum, B. Boyan, and Z. Schwartz (2011). Electrical Implications of Corrosion for Osseointegration of Titanium Implants. Journal of Dental Research, 90(12); 1389–1397

Greger, M., M. Widomská, and L. Kander (2010). Mechanical Properties of Ultra-Fine Grain Titanium. Journal of Achievements in Materials and Manufacturing Engineering, 40(1); 33–40

Gulati, K., S. M. Hamlet, and S. Ivanovski (2018). Tailoring the Immuno-Responsiveness of Anodized Nano-Engineered Titanium Implants. Journal of Materials Chemistry B, 6(18); 2677–2689

Jiang, W., H. Cui, and Y. Song (2018). Electrochemical Corrosion Behaviors of Titanium Covered by Various TiO2 Nanotube Films in Artificial Saliva. Journal of Materials Science, 53(21); 15130–15141

Jones, D. (1996). Principles and Prevention of Corrosion. Prentice Hall

Li, J., Y. Bai, Z. Fan, S. Li, Y. Hao, R. Yang, and Y. Gao (2018). Effect of Fluoride on the Corrosion Behavior of Nanostructured Ti-24Nb-4Zr-8Sn Alloy in Acidulated Artificial Saliva. Journal of Materials Science & Technology, 34(9); 1660–1670

Liu, C., Y. Wang, M. Wang, W. Huang, and P. Chu (2012). Electrochemical Behaviour of TiO2 Nanotube on Titanium in Artificial Saliva Containing Bovine Serum Albumin. Corrosion Engineering, Science and Technology, 47(3); 167–169

Liu, C., Y. Wang, M. Wang, W. Huang, and P. K. Chu (2011). Electrochemical Stability of TiO2 Nanotubes with Different Diameters in Artificial Saliva. Surface and Coatings Technology, 206(1); 63–67

Liu, X., P. K. Chu, and C. Ding (2004). Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications. Materials Science and Engineering: R: Reports, 47(3-4); 49–121

Ma, Q. L., L. Z. Zhao, R. R. Liu, B. Q. Jin, W. Song, Y. Wang, Y. S. Zhang, L. H. Chen, and Y. M. Zhang (2014). Improved Implant Osseointegration of a Nanostructured Titanium Surface Via Mediation of Macrophage Polarization. Biomaterials, 35(37); 9853–9867

Manivasagam, G., D. Dhinasekaran, and A. Rajamanickam (2010). Biomedical Implants: Corrosion and Its Prevention-A Review. Recent Patents on Corrosion Science, 2(1); 40–54

Mellado-Valero, A., A. Igual Muñoz, V. Guiñón Pina, and M. F. Sola-Ruiz (2018). Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva. Materials, 11(1); 171

Milošev, I., B. Kapun, and V. S. Šelih (2013). The Effect of Fluoride Ions on the Corrosion Behaviour of Ti Metal, and Ti6-Al-7Nb and Ti-6Al-4V Alloys in Artificial Saliva. Acta Chimica Slovenica, 60(3); 543–555

Neacsu, P., A. Mazare, P. Schmuki, and A. Cimpean (2015). Attenuation of the Macrophage Inflammatory Activity by TiO2 Nanotubes Via Inhibition of Mapk and NF-κB Pathways. International Journal of Nanomedicine, 10; 6455–6467

Noumbissi, S., A. Scarano, and S. Gupta (2019). A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials, 12(3); 368

Rajyalakshmi, A., B. Ercan, K. Balasubramanian, and T. J. Webster (2011). Reduced Adhesion of Macrophages on Anodized Titanium with Select Nanotube Surface Features. International Journal of Nanomedicine, 6; 1765–1771

Rodrigues, D. C., P. Valderrama, T. G. Wilson Jr, K. Palmer, A. Thomas, S. Sridhar, A. Adapalli, M. Burbano, and C. Wadhwani (2013). Titanium Corrosion Mechanisms in the Oral Environment: A Retrieval Study. Materials, 6(11); 5258–5274

Smith, B. S., P. Capellato, S. Kelley, M. Gonzalez-Juarrero, and K. C. Popat (2013). Reduced In Vitro Immune Response on Titania Nanotube Arrays Compared to Titanium Surface. Biomaterials Science, 1(3); 322–332

Sotniczuk, A., D. Kuczyńska, D. Kubacka, A. Królikowski, and H. Garbacz (2019). Influence of Nanostructure on Titanium Corrosion Resistance in Fluoridated Medium. Materials Science and Technology, 35(3); 288–296

Zhu, X., J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer (2004). Effects of Topography and Composition of Titanium Surface Oxide

Downloads

Published

2024-03-26

Issue

Section

Review